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a b s t r a c t 

This paper studies the Graph-Connected Clique-Partitioning Problem (GCCP), a clustering optimization 

model in which units are characterized by both individual and relational data. This problem, introduced 

by Benati, Puerto, and Rodríguez-Chía (2017) under the name of Connected Partitioning Problem, shows 

that the combination of the two data types improves the clustering quality in comparison with other 

methodologies. Nevertheless, the resulting optimization problem is difficult to solve; only small-sized 

instances can be solved exactly, large-sized instances require the application of heuristic algorithms. In 

this paper we improve the exact and the heuristic algorithms previously proposed. Here, we provide a 

new Integer Linear Programming (ILP) formulation, that solves larger instances, but at the cost of using 

an exponential number of variables. In order to limit the number of variables necessary to calculate 

the optimum, the new ILP formulation is solved implementing a branch-and-price (B&P) algorithm. The 

resulting pricing problem is itself a new combinatorial model: the Maximum-weighted Graph-Connected 

Single-Clique problem (MGCSC), that we solve testing various Mixed Integer Linear Programming (MILP) 

formulations and proposing a new fast “random shrink” heuristic. In this way, we are able to improve 

the previous algorithms: The B&P method outperforms the computational times of the previous MILP 

algorithms and the new random shrink heuristic, when applied to GCCP, is both faster and more accurate 

than the previous heuristic methods. Moreover, the combination of column generation and random shrink 

is itself a new MILP-relaxed matheuristic that can be applied to large instances too. Its main advantage 

is that all heuristic local optima are combined together in a restricted MILP, consisting in the application 

of the exact B&P method but solving heuristically the pricing problem. 

© 2021 Published by Elsevier B.V. 
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. Introduction 

We consider a clustering problem in which units are character- 

zed by both individual and relational data. Individual data take the 

orm of a matrix F of n rows, representing units, and m columns, 

epresenting features that are measured for individuals. Individual 

ata are then complemented by relational data, for example rep- 

esenting friendship, communication, co-participation and so on. 

elational data are described as an undirected graph G = (V, E) 

n which V are the units, | V | = n, and there is an edge e i j ∈ E if

nd only if there is a relation between i, j ∈ V . The data structure

hat combines the graph G = (V, E) with the data matrix F forms 
∗ Corresponding author. 

E-mail addresses: stefano.benati@unitn.it (S. Benati), dponce@us.es (D. Ponce), 

uerto@us.es (J. Puerto), antonio.rodriguezchia@uca.es (A.M. Rodríguez-Chía). 

d

a

e

(

a

m

ttps://doi.org/10.1016/j.ejor.2021.05.043 

377-2217/© 2021 Published by Elsevier B.V. 

Please cite this article as: S. Benati, D. Ponce, J. Puerto et al., A branch-

European Journal of Operational Research, https://doi.org/10.1016/j.ejor.
he triplet G = (V, E, F ) , called attributed graph , see Bothorel, Cruz,

agnani, and Micenkova (2015) . 

The simplest method of clustering attributed graphs is project- 

ng the relational data into the individual data, or vice versa, the 

ndividual into the relational. In the former case, a dissimilarity 

easure between units i and j is calculated using both individ- 

al measures of F and the existence/non-existence of an arc i, j, 

ombe, Largeron, Egyed-Zsigmond, and Géry (2012) , Cheng, Zhou, 

uang, and Yu (2012) . In the latter case, the matrix F is used 

o calculate a distance d i j attached to an existing arc e i j , and to

onvert the unweighted graph into a weighted one, Neville, Adler, 

nd Jensen (2003) . In both cases, the problem is reduced to stan- 

ard clustering or graph partitioning problems respectively, and 

ny solution methods for those problems can be applied. The inter- 

sted reader is referred to Gambella, Ghaddar, and Naoum-Sawaya 

2021) for a recent survey. Alternatively, the two data structures 

re kept separate and then one can formulate an optimization 

odel to determine the best classification. The optimization model 
and-price procedure for clustering data that are graph connected, 
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ust be formulated in such a way that it takes into account that 

elational data give additional information about the similarity 

etween units. That is, the objective function or the constraints 

et must reflect some connectivity requirement. In Benati, Puerto, 

nd Rodríguez-Chía (2017) , clustering with graph-connected units 

s modeled as a combinatorial problem in which the most simi- 

ar groups are evaluated through the clique partition of individual 

ata, namely, induced by the information in F but with the addi- 

ional constraint that those cliques must be additionally connected 

hrough the underlying graph G, representing the relational data. 

he problem so formulated has been called the Graph-Connected 

lique-Partitioning Problem (GCCP). Benati et al. (2017) shows that 

his model is superior than classical clustering methods in finding 

rue clusters. 

More formally, the GCCP consists in the following. An attributed 

raph G = (V, E, F ) is given, so that the similarity/dissimilarity dis- 

ances c i j between all pairs i, j can be calculated using only the 

nformation contained in F, see Benati et al. (2017) for further de- 

ails on its computation. These c i j are used to formulate the objec- 

ive function of a clique partitioning problem as done in Grötschel 

nd Wakabayashi (1989) . Relational data E are used imposing that 

he optimal clique partition � = { V 1 , . . . , V p } , 1 ≤ p ≤ n, must be

omposed of components V k ⊆ V, k = 1 , . . . , p, connected trough the 

rcs of E. Some empirical experiments have shown that combining 

he two data sources through this model improves the clustering 

uality. 

In Benati et al. (2017) , exact and heuristic methods are pro- 

osed to solve the GCCP. Exact solutions are calculated though 

ifferent MILP models. Those models differ on how they im- 

ose connectivity through a set of linear constraints. Connectiv- 

ty can be imposed through flow conservation laws, or using con- 

traints describing the forest/tree decomposition, and models can 

e strengthened with valid inequalities. Some formulations are 

ore advantageous than others, but, in all cases, only problems of 

oderate size can be solved exactly. Various implementations of 

ocal search heuristics are tested as well, but, even though those 

ethods find reasonably accurate solutions, their computational 

imes are high. Therefore, it is worth exploring the possibility of 

mproving on these previous findings. 

In this paper we are proposing three new methods, one exact 

rocedure and two heuristics, to solve the GCCP. The exact method 

s based on a branch-and-price algorithm (B&P), a technique that 

as been proved successful when applied to other clustering prob- 

ems, Mehrotra and Trick (1998) , Aloise et al. (2010) . The interested 

eader can also see Lübbecke and Desrosiers (2005) , Gualandi and 

alucelli (2013) , and the references therein to gain further insight 

nto column generation techniques. 

The first step of the algorithm is to formulate GCCP as a Set 

artitioning (SP) problem. In the SP, a binary variable y S is de- 

ned for every feasible subsets S ⊆ V, and then a set of linear con- 

traints defines the feasible solutions. Obviously, the straight solu- 

ion of the model is impeded by the exponential number of vari- 

bles, O (2 n ) , but actually there is no need to consider them all

ust from the beginning. Rather, one can start with a MILP for- 

ulation including only a few of the y S ’s, solve the problem, and 

hen adding new variables only after the result of the reduced 

ost test. The reduced cost test relies on the exact or heuristic so- 

ution of a new combinatorial problem, the Maximum-weighted 

raph-Connected Single-Clique problem (MGCSC). We formulate 

he MGCSC as a MILP model, testing the effectiveness of vari- 

us formulations. Moreover, as it is important to find a solution 

uickly, thus a fast, greedy-like constructive heuristic has been de- 

eloped, inspired by the noising method proposed in Charon and 

udry (2006) . As a result, it has been found that this heuristic can 

e applied to the GCCP as well, providing a faster and more ac- 

urate algorithm than local search heuristics. In addition, a MILP- 
2 
elaxed matheuristic procedure is developed that combines the 

uickness of previously described heuristic with the accuracy of 

he column generation developed for the exact method. We refer 

he reader to Raidl (2015) and the references therein for alternative 

uccessful combinations of column generation and heuristics. Fi- 

ally, we found that our implementation of B&P, the heuristic and 

atheuristic approaches developed in this paper are respectively 

mprovements of the previous exact and heuristics solution proce- 

ures as they calculate faster their respectively optimal or approx- 

mate solutions. 

The paper is structured in seven sections, the first being this 

ntroduction. In Section 2 , we provide a formal definition of the 

roblem and its formulation as a SP with an exponential number 

f variables. In Section 3 , we discuss the pricing problem consisting 

f a new combinatorial problem, the MGCSC, so we discuss how 

o calculate its optimal solution. In Section 4 , we describe a fast 

euristic for an approximate solution of both GCCP and MGCSC, 

ased on greedy, but enhanced through the use of some random 

teps. Also a MILP-relaxed matheuristic, capable of handling very 

arge instances with good accuracy, is proposed. Section 5 is de- 

oted to describing some details of the B&P which are not in- 

luded in Section 2 for the ease of compactness. In Section 6 , we

eport our computational analysis, comparing the exact methods to 

olve the GCCP by B&P through different formulations of the pric- 

ng problem and testing the performance of the heuristics too. The 

aper ends with some remarks on future research directions. 

. Problem definition and set partitioning formulation 

In this section, we formally define the GCCP. Let V = { 1 , . . . , n }
e a set of units and C = (c i j ) i, j∈ V a measure of similar-

ty/dissimilarity between units, with c i j < 0 denoting similarity, 

issimilarity otherwise. Assume that units of V are embedded in 

 graph G = (V, E) , whose edges e i j ∈ E describe links between

, j ∈ V . Given Q ⊆ V, let G [ Q] = (Q, E[ Q]) be the subgraph induced

y Q, i.e., the graph with edges e i j ∈ E[ Q] iff i, j ∈ Q and e i j ∈ E. We

ay that Q ⊆ V is connected if G [ Q ] = (Q , E[ Q ]) , i.e., the subgraph

nduced by Q, is a connected subgraph. 

The goal of GCCP is to find a partition � = { V 1 , . . . , V p } of V 

with parameter p not fixed in advance, i.e., 1 ≤ p ≤ n ), such that 

ny V k , k = 1 , . . . , p, is connected and minimizing the objective

unction: 

f (�) = 

p ∑ 

k =1 

∑ 

i, j∈ V k 
c i j . 

Hence, GCCP can be formulated as follows: 

min 

�∈ P 
f (�) 

s.t. V k is connected for all V k ∈ �, 

here P is the set of all the partitions of V . 

As GCCP is in minimization form, units i and j for which c i j is 

egative will tend to be in the same group, while units for which 

 i j is positive will tend to be in different groups. Introducing a con- 

ection constraint between units implies that even though a unit 

an be similar to several others, it can be clustered only to the 

onnected units. 

In Benati et al. (2017) , GCCP has been formulated and solved 

ith exact and heuristic methods. Exact methods are some MILP 

ormulations based on the Clique Partition problem with con- 

ection constraints. Heuristic methods are the improved local 

earch heuristics Variable Neighborhood Search (VNS) and Ran- 

om Restart (RR). In this paper, we introduce a new MILP formu- 

ation with an exponential number of variables that will be solved 

hrough column generation, embedded in a branch-and-price algo- 

ithm. Next we introduce two new heuristic procedures: A con- 
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Algorithm 1: B&P for GCCP. 

Input : An instance of GCCP with data C, G = (V, E) . 

Output : An optimal partition � of V . 

1 S ← Initiate( C, G ) 

2 optimality ← false 

3 node ← root node 

4 while optimality = false do 

5 (γ ∗, y ∗) ← Solve ((RelaxedMP ) S , node) 

6 S ← Solve_Pricing_Problem (γ ∗, node) 

7 if c̄ (y S ) < 0 then 

8 S ← S ∪ S 

9 else 

10 if y ∗ integral then 

11 if Upper_Bound (y ∗) then 

12 optimality ← true 

13 else 

14 node ← Next_Node(MP) 

15 else 

16 if Lower_Bound (y ∗) then 

17 optimality ← true 

18 else 

19 Branch (y ∗) 
20 node ← Next_Node(MP) 

d
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tructive heuristic based on random shrink and a MILP-relaxed 

atheuristic based on approximated column generation. All new 

ethods are improvements over the old ones, as the exact method 

mproves the computational times and the maximum size of the 

olved instances, while the heuristics improve the optimum ap- 

roximation for a given computational time. 

.1. The set partitioning formulation 

In this section, a new formulation of GCCP is introduced, in 

hich an exponential number of variables are needed. Suppose 

hat we can list all connected subsets S of V : Let S = { S | S ⊆
, G [ S] is connected } and let c S = 

∑ 

i ∈ S 
∑ 

j ∈ S: j >i c i j . Le t y S be a bi-

ary variable defined for all S ∈ S such that: 

 S = 

{
1 , if S ∈ �, 

0 , otherwise. 

ence, GCCP can be formulated as follows: 

MP ) min 

∑ 

S∈S 
c S y S 

s.t. 
∑ 

S∈S: i ∈ S 
y S = 1 , ∀ i ∈ V, 

y S ∈ { 0 , 1 } , ∀ S ∈ S. 

he problem constraints ensure that a unit is included in exactly 

ne cluster, so that subsets S must form a partition �. The value 

f a partition is given by the problem objective function. The draw- 

ack of (MP) is that it contains an exponential number of binary 

ariables to explicitly define S . Hence, we consider its restricted 

ersion. The idea is to formulate (MP) with only a fraction of the 

 S variables. Then, solving its linear relaxation, we can obtain re- 

uced costs for the absent variables y S and determine whether a 

ew variable/column y S is to be introduced in the relaxed and re- 

tricted (MP), or the current solution is optimal for that problem. 

ranching is applied each time a not integral solution is found un- 

il optimality is proved. The reader is referred to the following 

orks and the references therein for further details on the fol- 

owing topics: Desrosiers and Lübbecke (2005) , for a precise pre- 

entation about column generation; Barnhart, Johnson, Nemhauser, 

avelsbergh, and Vance (1996) for a detailed explanation about 

ranch-and-price; and to Deleplanque, Labbé, Ponce, and Puerto 

2020) , for a recent application of those techniques. A pseudocode 

f this method is provided in Algorithm 1 and explained in detail 

n Section 5 . 

.2. Relaxed restricted master problem 

Here we explain the solution procedure of the relaxed mas- 

er problem at the root node. The same procedure is applied in 

he remaining nodes. The particularities involved in the solution of 

ranched nodes can be found in Section 5 . 

Let S ⊆ S be a subset of all the feasible clusters. The relaxed 

nd restricted master problem is: 

RelaxedMP ) S min 

∑ 

S∈ S 
c S y S Dual Multipliers 

s.t. 
∑ 

S∈ S : i ∈ S 
y S = 1 , ∀ i ∈ V, γi unrestricted 

y S ≥ 0 , ∀ S ∈ S . 

Observe that the dual multipliers associated with each con- 

traint are emphasized in the right-hand side of the formulation 

bove. 

The dual of the relaxed and restricted master problem is 

DP ) S max 

n ∑ 

i =1 

γi 
3 
s.t. 
∑ 

i ∈ S 
γi ≤ c S , ∀ S ∈ S , 

γi unrestricted, ∀ i ∈ V. 

Given an optimal solution γ ∗ of (DP ) S , we can obtain the re- 

uced cost of an absent variable y S of the master problem as: 

¯
 (y S ) = c S −

∑ 

i ∈ S 
γ ∗

i . 

f it can be proved that the reduced costs of all the missing vari- 

bles are nonnegative, then the master problem is solved to op- 

imality. Otherwise, any variable y S with c̄ (y S ) < 0 induces a new 

olumn to be included in (RelaxedMP ) S to (possibly) improve the 

ncumbent solution. We refer to the pricing problem as the prob- 

em of finding a cluster S ∈ S such that c S −
∑ 

i ∈ S γ ∗
i 

< 0 , or to

rove that it does not exist. If, after solving the pricing problem, 

ne or more new variables y S are introduced in (RelaxedMP ) S , 

hen it is solved again. Otherwise, the relaxed master problem is 

olved to optimality. 

. The pricing problem 

Step 6 of Algorithm 1 , i.e., the solution of the pricing problem, 

s an important step. The problem consists in answering the ques- 

ion “ Is c S −
∑ 

i ∈ S γ ∗
i 

< 0 for some S ∈ S?” To respond to the query 

e define a new combinatorial problem on the graph G = (V, E) 

here inputs are the costs c i j associated to each pair of nodes 

, j ∈ V and node weights −γ ∗
i 

for all i ∈ V . Then, the Maximum-

eighted Graph-Connected Single-Clique (MGCSC) on G consists 

n: Given a graph G = (V, E) with weights associated with each 

air of nodes and each individual node, find a connected sub- 

et of V, minimizing the sum of both node weights and pairs- 

f-nodes weights. The reader should observe that in our applica- 

ion we solve minimization problems since weights can be posi- 

ive and negative. This problem is related with the prize collect- 

ng Steiner tree problem, Ljubi ́c et al. (2006) , and the maximum 
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eight connected subgraph problem, Álvarez-Miranda, Ljubi ́c, and 

utzel (2013) , although in both cases the graph structure, weights 

nd the objective function are different. The MGCSC reduces to the 

aximum-weighted clique problem when G is a complete graph, 

herefore the former is trivially N P -hard, Balas, Chvátal, and Ne- 

etril (1987) . 

The problem described above can be formulated in each pricing 

teration at the root node of the master problem. As before, we 

eave the necessary branching modifications to Section 5 . 

In spite of its exponential worst-case complexity, Step 6 can be 

mplemented in such a way to maintain an efficient computation. 

n fact, it is not necessary to find the optimal S, that is, to calcu-

ate the exact minimum c̄ (y S ) . It is sufficient to find any S ∈ S for

hich c̄ (y S ) < 0 (and even more than one of such S if possible).

herefore, we can solve MGCSC using a heuristic method and only 

hen the heuristic fails, we calculate its exact solution. At the end 

f the algorithm, the exact solution of the pricing problem is surely 

eeded to certify optimality in (MP), that is, proving that all miss- 

ng S’s are such that c̄ (y S ) ≥ 0 . Nevertheless, before that, hopefully 

 large amount of required variables are detected heuristically. 

In the next sections, we propose some MILP models to solve 

GCSC. The main differences among models are the type of con- 

traints that impose connectivity. 

.1. Flow-based formulation 

The idea behind this formulation is that if a set S ⊆ V is con- 

ected, then a source node can send a unit of flow to any node of

using the auxiliary network induced by S. Let G D = (V, A ) be a

igraph with set of arcs, A, so defined: Two arcs (i, j) and ( j, i ) for

very edge e i j (= e ji ) ∈ E. For each subset S ⊂ V one of its nodes

s assumed to be a source and all the remaining nodes ask for a 

nit of flow that must be sent from that source. Then, an objective 

unction is minimized with respect to a node set S, but constraints 

ill try to establish a flow from the source to the nodes of S. If a

ow is permissible, then those nodes are connected and S is fea- 

ible, so that y S is a candidate variable/column for the restricted 

aster problem. Although in principle, we may assume that any 

ode of V could be the source, this would produce many symmet- 

ic solutions. They are broken imposing that, for any connected S, 

he only source within S is the largest index node. 

For this formulation one needs flow variables f i j defined for all 

airs i, j such that (i, j) ∈ A . In addition, the following variables are

equired. For i ∈ V, the variable x i is defined as: 

 i = 

{
1 , if node i is in the cluster, 
0 , otherwise. 

or any i, j = 1 , . . . , n such that i < j, the variable z i j is defined

s: 

 i j = 

{
1 , if nodes i and j are in the cluster, 
0 , otherwise. 

For any (i, j) ∈ A, the variable f i j is defined as: 

f i j = amount of flow sent from node i to node j. 

he flow-based formulation of MGCSC is: 

F flow 

) min 

∑ 

i ∈ V 

n ∑ 

j ∈ V : j >i 

c i j z i j −
n ∑ 

i =1 

γ ∗
i x i (1) 

s.t. z i j ≤ x i , ∀ i, j ∈ V : i < j, (2) 

z i j ≤ x j , ∀ i, j ∈ V : i < j, (3) 
4 
z i j ≥ x i + x j − 1 , ∀ i, j ∈ V : i < j, (4) 

∑ 

 ∈ V :(i,k ) ∈ A 
f ik −

∑ 

i ∈ V :(k,i ) ∈ A 
f ki ≥ x k + (n − 2)(x j − 1) , ∀ k, j ∈ V : j > k, 

(5) 

∑ 

j ∈ V :(i, j ) ∈ A 
f i j ≤

∑ 

j ∈ V : j <i 

z ji + 

∑ 

j∈ V : i< j 

z i j , ∀ i ∈ V, (6) 

z i j ≥ 0 , ∀ i, j ∈ V : i < j, (7) 

f i j ≥ 0 , ∀ (i, j) ∈ A, (8) 

x i ∈ { 0 , 1 } , ∀ i ∈ V. (9) 

The objective function (1) accounts for the reduced cost. Con- 

traints (2) –(4) are the usual inequalities of the Clique Partitioning 

roblem to ensure that z i j = x i x j . Constraints (5) are the flow con-

ervation law, valid for all nodes of the cluster except for the node 

ith the greatest index. This node is the source, so a flow of the 

ardinality of the cluster minus one can leave the node. Constraints 

6) provide an upper bound of the outflow from any node i ∈ V, in

ddition, if this node does not belong to the cluster the right hand 

ide of the constraints is 0, i.e., there is not outflow. Lastly, (7) –(9)

efine the domain of the variables. 

An alternative formulation is given in Appendix; where an aux- 

liary node is considered as source node. That formulation is more 

atural and intuitive than the one given in this section, but it pro- 

ides worse computational results. In spite of that, we decided to 

eep it in this manuscript because it can ease the understanding 

f the formulation in this section. 

Formulation (F flow 

) can be strengthened with the families of 

alid inequalities described in B.1 in Appendix. 

The minimum reduced cost is c S = c S −
∑ n 

i =1 γ
∗

i 
x ∗

i 
, where c S = 

 n 
i =1 

∑ n 
j= i +1 c i j z 

∗
i j 

. If c S ≥ 0 , then the linear relaxation of the mas- 

er problem is optimal. Otherwise the column y S , that is the in- 

ident vector of S, is introduced to the restricted master problem 

see Step 8 of Algorithm 1 ). 

.2. Arborescence formulation 

The rationale behind this formulation is that if a node set S is 

onnected, then we can establish a directed spanning subtree using 

ny node of S as the root, and assigning labels to all other nodes 

f S representing their corresponding positions in the ascending 

rdered sequence of distances from the root to the nodes. Those 

ype of constraints are known as Miller-Tucker-Zemlin (MTZ) in- 

qualities, introduced to solve the Traveling Salesman Problem in 

iller, Tucker, and Zemlin (1960) , and used in other routing prob- 

ems, Laporte (1992) , Gouveia (1996) , Bekta ̧s and Gouveia (2014) ; 

andete and Marín (2014) . 

Let G D = (V, A ) be an auxiliary network as defined in 

ection 3.1 . The MTZ description of the Spanning Tree builds an 

rborescence rooted at the source node, and in which the arcs fol- 

ow the direction from the root to the leaves: Binary variables t i j , 

efined for every (i, j) ∈ A, will take value 1 if the arc (i, j) ∈ A be-

ongs to the arborescence, 0 otherwise. Then, continuous variables 

 i will indicate the position according to the distance from the root 

o node i in the ordered sequence of distances from the root to the 

odes using only arcs of the arborescence. Binary variables x and z
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re defined as in the previous formulation and, as before, to avoid 

ymmetric optimal solutions, for any node set S only the node with 

he highest index can be the root. 

Thus, the arborescence-based formulation of MGCSC is: 

F MTZ ) min 

∑ 

i ∈ V 

∑ 

j∈ V : i< j 

c i j z i j −
∑ 

i ∈ V 
γ ∗

i x i 

s.t. (2) − (4) , (7) , (9) 

� i + 1 ≤ � j + n (1 − t i j ) , ∀ (i, j) ∈ A, (10) 

t i j + t ji ≤ z i j , ∀ (i, j) ∈ A : i < j, (11) 

∑ 

i ∈ V :(i,k ) ∈ A 
t ik ≥ x j + x k − 1 , ∀ k, j ∈ V : j > k, (12) 

t i j ∈ { 0 , 1 } , ∀ (i, j) ∈ A, (13) 

� i ∈ R , ∀ i ∈ V. (14) 

Constraints (10) guarantee that the label assigned to node j

s at least as great as the label assigned to node i when the arc

i, j) ∈ A is chosen. Actually, these constraints only avoid cycles, 

ut combined with constraints (11) , they also exclude arcs incident 

o any node i not in S. Constraints (12) ensure that there is at least

ne arc incident to all the nodes of S (with the exception of the 

ne with the highest index). Those arcs will form an arborescence, 

he nodes of the arborescence are the optimal connected compo- 

ent S. Finally, the domain of the variables is defined in (13) and 

14) . 

Formulation (F MTZ ) can be strengthened with the family of 

alid inequalities described in B.2 of the Appendix. 

An alternative formulation, where an auxiliary node is used as 

ource node, is presented in Section A.2 in the Appendix. The for- 

ulation (F MTZ ) outperforms that formulation. Nevertheless, we 

ecided to keep it in this manuscript because the former is more 

atural and intuitive. 

.3. Relaxations 

If some of the models above are formulated without some 

model constraints”, then the resulting formulation will be referred 

o as “relaxation”. Relaxations are solved faster, but of course, the 

olution can be unfeasible to the original model. The idea is to it- 

ratively add constraints to the relaxation, hopefully not too many, 

rom the removed constraints set to find a feasible solution of 

he original model. Relaxations have been coded in SCIP by im- 

lementing a constraint handler ( Gleixner et al., 2018 ). We have 

xplored the possibility of improving the computational times us- 

ng two relaxations. 

.3.1. Clique relaxation 

In the first relaxation, clique equations z i j = x i x j , modeled by 

onstraints (2) –(4) , are discarded. Since this type of constraints in- 

olves binary variables and they are O (n 2 ) , all MILP problems can

e solved faster without their explicit representation. Then, given 

n incumbent solution, a separation oracle tests by full enumera- 

ion whether it violates some clique inequality and if so, it is in- 

erted into the MILP model. As it will be seen in the computational 

ection, in some cases this strategy has obtained good results. 
5 
.3.2. Connectivity relaxation 

In the second relaxation, connectivity constraints of F flow 

and 

 MTZ are discarded (while retaining the clique constraints (2) –(4) ). 

uppose that an oracle determines that a node subset S is not con- 

ected because at least one pair i, j ∈ S is not connected in G [ S] .

hen, if i, j should be in the same node subset, it should include 

t least one node out of S to be the bridge used to connect i and

j. That is, for a given S and i, j ∈ S, the connectivity constraints are

epresented by: 

n ∑ 

 = i +1: � �∈ S 
z i� + 

i −1 ∑ 

� =1: � �∈ S 
z �i − z i j ≥ 0 . (15) 

he formal proof of this result can be found as Theorem 2.1 in 

enati et al. (2017) . Note that the number of constraints (15) is 

xponential, but they can be separated efficiently. For a given el- 

ment of a partition S ⊆ V of an incumbent solution, consider the 

uxiliary complete graph G S in which edge lengths are l i j = 0 if 

i, j) ∈ E[ S] , l i j = 1 otherwise. Let LSP (i, j) be the shortest path dis-

ance from node i to node j (this can be computed by the Floyd–

arshall algorithm). If the maximum value of LSP (i, j) for i, j ∈ S is

qual to 1, then subset S is not connected. The formal description 

f the separation procedure is described in Algorithm 2 . 

Algorithm 2: Separation Algorithm. 

Input : G = (V, E) , ( ̄z , ̄x ) a solution of connectivity relaxation, 

S := { k : x̄ k > 0 } . 
Output : Violated cuts of the family (15). 

1 for i, j(i < j) ∈ S do 

2 Compute LSP (i, j) in the complete graph G S with length of 

edges defined by: 

l i j := 

{
0 , if e i j ∈ E[ S] , 

1 , otherwise. 

if LSP (i, j) > 0 ( i and j are not connected in G [ S] ) then 

3 Add the following inequality of family (15): 

n ∑ 

� = i +1: � �∈ S 
z i� + 

i −1 ∑ 

� =1: � �∈ S k 
z �i − z i j ≥ 0 . (16) 

4 return: All violated cuts found from family (15). 

. A shrinking-based and a MILP-relaxed matheuristic 

In this section, two new heuristics for the GCCP are described. 

he first one, called Random Shrink (RS) heuristic, is a fast, con- 

tructive method to compute quickly an approximate solution. It 

s flexible enough to be applied to MGCSC problem as well, and in 

act it is the heuristic that has been used to solve the pricing prob- 

em. The second heuristic is based on the approximated solution 

f the linear relaxation of (MP) in each node of the branch-and- 

ound (B&B) tree, in which the pricing problems are solved only 

hrough the RS heuristic. If the heuristic cannot find a negative re- 

uced cost column, then the algorithm stops. 

.1. Random shrink heuristic 

This section describes the first new heuristic algorithm devised 

o solve quickly both, GCCP and the MGCSC (with minimal modifi- 

ations). Finding a feasible solution of the former problem is nec- 

ssary in Step 1 of Algorithm 1 , because the master problem must 

e initialized with a set of variables y S , while solving the latter 

roblem is necessary in Step 6 to find one or more new variables 
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Algorithm 4: Random Shrink. 

Input : The GCCP problem, max_start, max_random_move. 

Output : The optimal partition: G 

best . 

1 for s := 1 to max_start do 

2 if s > 1 then 

3 random_move = Unif(1,max_random_move) 

4 for t := 1 to random_move do 

5 e i j ← Random_choice (W ) 

6 G 

h +1 ← Shrink (G 

h ) 

7 h ← q 

8 fine := false 

9 while fine = false do 

10 e i j ← arg min { c h 
i j 
} 

11 if c h 
i j 

< 0 then 

12 G 

h +1 ← Shrink (G 

h ) 

13 h ← q 

14 else 

15 G 

best ← Update_Best (G 

h ) 

16 W ← Update_Weight (W ) 

17 fine := true 

18 return G 

best 

1

m

t  

p

o

s

r

o  

fi

i

t

h

o

n

o

i
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t  

e

a

 S with negative reduced costs. As the algorithm is embedded in a 

&P scheme, it must run quickly. 

The new algorithm is based on the idea of shrinking the nodes 

f the graph G = (V, E) in such a way that we have, in each itera-

ion, a feasible partition, i.e., the elements of the partition are con- 

ected subsets as subgraphs on G . As a matter of fact, the GCCP 

ata input is itself a partition, the one in which every singleton is 

 cluster. If two connected nodes are shrunk, the resulting graph 

ill contain | V | − 1 nodes, but one node is actually containing two 

f the original, that is, the partition begins to have a structure. So, 

hrink can be repeated over and over, until a stopping criterion is 

atisfied. 

More formally, shrink is the operation described in Algorithm 3 . 

Input are the data structure G 

h = < V h , E h , c h , πh > and the node

Algorithm 3: Subroutine SHRINK. 

Input : Data structure: G 

h = < V h , E h , c h , πh >, the pair 

i, j ∈ V h with e i j ∈ E h . 

Output : The data structure: G 

h +1 = < V h +1 , E h +1 , c h +1 , πh +1 > . 

1 V h +1 ← V h \ { j} 
2 E h +1 ← E h \ { e i j } 
3 πh +1 

k 
← πh 

k 
∀ k ( � = i, j) ∈ V h 

4 πh +1 
i 

← πh 
i 

+ c h 
i j 

5 c h +1 
k� 

← c h 
k� 

∀ e k� ∈ E h +1 

6 for k ∈ V h : e jk ∈ E h do 

7 E h +1 ← E h +1 ∪ (i, k ) − ( j, k ) 

8 c h +1 
ik 

← c h +1 
ik 

+ c h 
jk 

9 f (V h +1 ) ← 

∑ 

k ∈ V h +1 π
h +1 
k 

10 return G 

h +1 

air i, j ∈ V h with e i j ∈ E h , where: V h is the active node set, each

ode representing a clique; E h is the active edge set; c h are the 

hrinking costs, defined for every pair i, j ∈ V h (when c h < 0 it is

ctually a gain); πh 
i 

are the clique costs, defined for every active 

ode i ∈ V h . Furthermore, we define f (V h ) as the objective func-

ion of partition V h , f (V h ) = 

∑ 

i ∈ V h π
h 
i 

. 

The output is a data structure G 

h +1 = < V h +1 , E h +1 , c h +1 , πh +1 >,

n which | V h +1 | = | V h | − 1 . When pair i, j ∈ V h is shrunk, then j

nd (i, j) are deleted from nodes and edges respectively. Then, the 

lique costs πh 
i 

increases or decreases by cost c h 
i j 
, see Steps 3 and 

. All links and the costs of j are allocated to i, see Steps 5–8.

inally, the objective function f (V h ) of the GCCP is updated in Step 

. Note that if we have to solve the MGCSC, then in Step 9 we can

efine f (V h +1 ) = min i ∈ V h +1 { πh +1 
i 

} . 
Before applying subroutine SHRINK in Algorithm 3 , an edge 

 i j ∈ E h must be elicited, but then, the choice can favor optimal- 

ty or diversification. According to the optimality criterion , i and j

ust be such that the cost c h 
i j 

is minimum. In this way, if the cost

s negative, shrinking i, j is the best decrease of the incumbent ob- 

ective function f (V h ) . According to the diversification criterion , i 

nd j can be selected randomly, but preferably the pair has been 

ften assigned to different clusters in previous local optima. 

The Random Shrink (RS) procedure is described in Algorithm 4 . 

nput data are an instance of GCCP, and parameters: max _ start

nd max _ random _ mov e . At the beginning, every cluster is a single-

on: V h = V, E h = E, πh = 0 , f (V h ) = 0 . Then the graph is shrunk

ntil a local optimum is found. In the first run, the method is 

reedy: Random moves are skipped, see Step 2. From the sec- 

nd round onwards, the first selections of pairs i, j, such that 

 i j ∈ E h , are random, see Steps 4–7. The number of random moves

s itself random (drawn from a discrete uniform distribution from 
6 
 to max _ random _ mov e ), and depends on the input parameter 

ax _ random _ mov e, see Step 3. 

The loop of Steps 9–17 is a standard greedy procedure, in which 

he best edge e i j is selected in Step 10. The graph is shrunk if it

rovides an improvement of the objective function (Steps 11-13), 

therwise, if necessary, the procedure updates the best solution 

o far (Steps 15–17). All is iterated max _ start times, an input pa- 

ameter, see Step 1. In every iteration, information about all local 

ptima is stored in matrix W . The role of W is to lead the diversi-

cation: When implementing the random choice of e i j , it is taken 

nto account how many times an edge e i j has been in local op- 

ima (that is, i and j were put into different clusters). The most it 

as been excluded from local optima, the highest is the probability 

f being selected randomly. To this purpose, when an egde e i j is 

ot in the local optimum E h , then the value w i j is augmented by 

ne. When doing a random choice, the probability of choosing e i j 

s P r[ i, j] = w i j /W, with W = 

∑ 

e i j ∈ E w i j . 

.2. A new MILP-relaxed matheuristic 

The B&P described in Algorithm 1 can be readily modified to 

alculate an approximate solution instead of the optimum. It is 

ufficient to solve the pricing problems using only the RS heuris- 

ic, and never calculate the exact solution of the different MGCSC 

roblems. Branching is still done to solve the master problem 

CCP, as it is usually not much time consuming. In other words, 

MP) is solved adding columns which empirically are tested to be 

seful, but not enough to certify optimality. In this way, GCCP is 

euristically solved very quickly, but at the price of only solving 

pproximately each linear relaxation of the master problem at any 

ode of the B&B tree. In spite of that, as our computational results 

how, the quality of the solutions are rather good. 

. A branch-and-price implementation 

In this section, we describe technical details of Algorithm 1 , 

hat were set aside so far for the sake of brevity. They are the gen-

ration of an initial solution, the branching rule, the Farkas pricing, 

nd the convergence of column generation. 
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.1. Starting solutions 

Good starting solutions, that is, the initial clusters y S ’s with 

heir costs, are important to prune the searching tree. So, in this 

hase the RS algorithm is run with an abundant iteration limit and 

ll local optima are used to define initial variables y S ’s and feasible 

olutions of GCCP. 

.2. Ryan-and-Foster branching 

Branching occurs when the LP solution of the master prob- 

em contains fractional variables. In B&P, it is not trivial to de- 

ne a branching rule to resolve fractional solutions without fix- 

ng variables that were already in the pool of columns, Barnhart 

t al. (1996) . Here, in Step 19 of Algorithm 1 , the Ryan-and-Foster

ranching has been implemented, as it has considerable advan- 

ages over alternatives. 

The Ryan-and-Foster (R-F) has been introduced to solve set par- 

itioning problems, see Ryan and Foster (1981) , and now is one of 

he most widespread techniques. If at a node of the master prob- 

em a solution contains fractional variables, the R-F rule creates 

wo new branches as follows: Given two elements i 1 , i 2 ∈ V, in one

ranch they will always be in the same cluster, whereas in the 

ther branch they will always be in different cluster. 

To implement this branching, we can take advantage of the x i 
ariables defined on the previous section for the pricing subprob- 

em: 

• Left branch: If i 1 and i 2 must be in different clusters implies 

that none of the variables corresponding to clusters containing 

i 1 and i 2 can assume positive values, i.e., 

∑ 

S� i 1 ,i 2 
y S = 0 ⇒ x i 1 + x i 2 ≤ 1 . 

• Right branch: Since i 1 and i 2 must be in the same cluster then 

the following sum must be equal to 1: 

∑ 

S� i 1 ,i 2 
y S = 1 ⇒ x i 1 = x i 2 . 

In practice, when a new node is created (or candidate to be 

olved), existing y S variables local bounds are modified according 

o the above constraints. These bounds are taken into account in 

tep 5 of Algorithm 1 when function Solve ((RelaxedMP ) S , node ) 

s called. 

Furthermore, to solve the pricing problem, new variables 

ot satisfying node requirements should be avoid. In function 

olv e _ P ricing _ P roblem (γ ∗, node ) (Step 6 of Algorithm 1 ) we include 

he information of the ancestor nodes: x i 1 + x i 2 ≤ 1 (left branch); 

nd x i 1 = x i 2 (right branch). 

Finally, Steps 9–19 of Algorithm 1 work similar to the com- 

on B&B algorithm with some particularities of our R-F branching. 

hen a fractional solution is found Branch( y ∗) finds a pair i 1 , i 2 ∈ I

or which 

 < 

∑ 

S� i 1 ,i 2 
y S < 1 , 

o create left and right nodes, using most fractional criterion. 

ower_Bound( y ∗) and Upper_Bound( y ∗) update the lower and up- 

er bound of (MP), respectively. Both functions return TRUE in case 

hat bounds coincide, so (MP) is solved. Otherwise, Next_Node(MP) 

ecides which is the next node to be studied. We let solver (SCIP, 

leixner et al., 2018 ) default-settings decide on the next node to 

e explored. 
7 
.3. Farkas pricing 

Another important element in any B&P algorithm is the so 

alled Farkas pricing. This is the subroutine that provides new 

olumns to the restricted master if it is locally infeasible. 

We observe that infeasibility only can happen on a new node 

f the branching tree. If it happens because the R-F branching pro- 

uces incompatible conditions, then the node is declared infeasible 

nd no call to any pricing problem is necessary. Otherwise, the R-F 

onditions are compatible but perhaps not enough y S variables are 

vailable in the pool to build a feasible solution. However, one can 

nsure fictitious feasible solutions by the following construction. 

roposition 5.1. Assume that one initializes the pool of columns with 

ll the singletons y { i } for all i ∈ V and all pairs y { i, j} for all i, j ∈ V .

hen, if the R-F branching leads to a node with compatible conditions 

CCP is always feasible. 

roof. The reader may note that if e i j �∈ E, we are augmenting in

he initial pool a fictitious edge to E with cost ˆ c i j = + M, M � 0 .

hese variables always ensure fictitious feasible solutions of the 

estricted master problem (actually they may not be connected). 

oreover, if it happens that in a node, one of those fictitious ele- 

ents is used in a partition, it would represent an actual infeasible 

olution but it will never be optimal. �

In conclusion, the above result justifies that GCCP does not need 

 Farkas pricing routine. 

.4. Convergence of column generation 

In column generation, it is well-known that the columns which 

ertify optimality emerge at the last iterations of the proce- 

ure. This phenomenon has been studied and different solutions 

ave been proposed in the literature to overcome it. Among oth- 

rs, du Merle, Villeneuve, Desrosiers, and Hansen (1999) , Pessoa, 

choa, Poggi, and Rodrigues (2010) , and Sato and Fukumura 

2012) have designed procedures to minimize the negative impact 

f the issue in the convergence of column generation algorithms. 

ee also Sato and Izunaga (2019) or Deleplanque et al. (2020) for 

ther recents applications of those techniques. 

Those stabilization procedures are based on the principle that 

dding in each iteration the column with the best reduced cost 

ay lead to convergence problems. In some way the conclusion of 

hose papers is that the pricing problem optimal solution should 

e taken into account only in the latter iterations. Following that 

rinciple and basing on the results of Section 6.1 , we solve the 

ricing problem heuristically for the first iterations. Hence, our al- 

orithm stabilizes itself ( Blanco, Japón, Ponce, & Puerto, 2021 ) as it 

s supported with our empirical results shown in Table 1 . 

. Computational studies 

Algorithms are tested on the instances previously used in Benati 

t al. (2017) , and on new instances with greater size. The ex- 

eriment layout is as proposed in Neville et al. (2003) : Data are 

omposed of n units on which m binary features, F i = { 0 , 1 } , i =
 , . . . , m, are recorded. Units belong to one of two groups, each 

roup is composed of n/ 2 units. If one unit belongs to group 1, 

hen Pr [ F i = 1] = p c for all i = 1 , . . . , m, otherwise, if the unit be-

ongs to group 2, then Pr [ F i = 1] = 1 − p c for all i = 1 , . . . , m . If p c 
s close to one, then the two groups are well separated, as p c gets

loser to 0.5, the separation is less and less precise. Units are con- 

ected through arcs: If two units (or nodes) belong to the same 

roup, then the probability of a joining arc is p in (the probability 

f an inner arc). If the two nodes belong to two different groups, 

hen the probability of a joining arc is p out (the probability of an 
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Table 1 

Average number of variables using the combined heuristic and exact pricers or only using the exact pricer for n = 20,30,36 (the exact pricer uses two formulations: (F flow ) 

and (F MTZ ) ). 

n = 20 n = 30 n = 36 

Heurvar Initial Heur Exact Total Initial Heur Exact Total Initial Heur Exact Total 

FALSE 51.5 0.0 27.6 79.1 79.4 0.0 69.5 148.9 98.3 0.0 164.9 263.2 

TRUE 51.5 23.5 5.4 80.4 79.4 43.7 12.8 135.9 98.3 102.8 34.3 235.4 

Variation + 1.7% −8.8% −10.6% 

Fig. 1. Performance profile graph of #solved instances using the combined heuristic 

and exact pricers or only using the exact pricer for n = 20,30,36 (the exact pricer 

uses two formulations: (F flow ) and (F MTZ ) ). 

o

v

t  

t

E  

c

i

t

s

s

3

i

u

t

o

6

h

i

a

p

A

t

r  

c

a

a

o

o

(

s

s

t

p

l

o

m

c

p

t

p

m

i

T

t

h  

t

H

t

a

i

t

(

c

i

6

t

m

b

f

M

l

a

s

r

c

a

C

S

s

o

p

t

n

s

s

R

n

r

l

P

uter arc). For the effect of the probabilities, the number X in of 

ertices of the same group and the number X out of vertices of 

he other group to which a given vertex i ∈ V is connected are

wo random variables, with expected values E[ X in ] ≈ np in / 2 and 

[ X out ] ≈ np out / 2 . All experiments are run with p in > p out , so that

onnectivity provides information: If a node i, whose membership 

s uncertain, is connected with a node j that is known to belong 

o Group k, then it is likely that i belongs to k as well. 

In all our computational experience, models are coded in C and 

olved with SCIP 6.0.1, Gleixner et al. (2018) , using the optimization 

olver CPLEX 12.8 on an Intel(R) Core(TM) i7-4790 CPU @4.00 GHz 

2 GB RAM. SCIP is a C library of subroutines specially devised to 

mplement branch-cut-and-price and is distributed free-of-charge, 

nder academic license, by the Zuse Institute Berlin (ZIB). We 

hank the SCIP team for the helpful technical advices in the course 

f this research. 

.1. Deciding the pricing problem implementation 

From now on, we call heuristic pricer the application of any 

euristic for solving the pricing problem. In case that the pric- 

ng problem is optimally solved, we call it exact pricer. First of 

ll, we want to decide whether combining exact and heuristic 

ricers is worth. We have begun by analyzing the performance of 

lgorithm 1 for solving to optimality GCCP. For that reason, to test 

he usefulness of combining the heuristic and the exact pricers, we 

un a pilot study on instances of size 20, 30 and 36 nodes. We have

ompared two different implementations: One combining heuristic 

nd the exact pricers, the other one only using the exact pricer. In 

ddition, two versions of exact pricers have been tested as well, 

ne using the Flow-based formulation, see Section 3.1 , and the 

ther using the Arborescence formulation, see Section 3.2 . Models 

F 0 
flow 

) and (F 0 
MTZ 

) , see Appendix A , were discarded at an early 

tage of our computational experiments since preliminary results 

how that the use of the auxiliary node does not add any advan- 

age concerning computational time. 

Fig. 1 reports the results of the 60 instances tested for each im- 

lementation (three sizes, ten instances per size, and two formu- 
8 
ations). It compares the number of solved instances versus time 

f Algorithm 1 using the Flow-based and the Arborescence for- 

ulations, and combining or excluding the heuristic pricer. One 

an observe that the combination of the exact and the heuristic 

ricer (line Heurvar = TRUE) is better than excluding the heuris- 

ic pricer (Heurvar = FALSE). These results suggest that solving the 

ricing problem combining the RS heuristic and any exact MILP is 

ore efficient than using only MILP. Therefore, this is the strategy 

mplemented to the largest instances too. 

Concerning the tailing off effect of this heuristic pricer, 

able 1 shows the number of necessary variables to certify op- 

imality for instances of different size, depending on whether 

euristic pricer is applied ( TRUE ) or not ( FALSE ). In this table, Ini-

ial is the average number of variables added from the beginning, 

eur is the average number of variables added after the heuris- 

ic pricer interation, and Exact is the average number of variables 

dded when the pricing problem is solved exactly. 

When the heuristic pricer is applied, the problem is solved us- 

ng a smaller number of variables. It means that the pricer heuris- 

ic not only saves computational time but also reduces degeneracy 

that is, the situation in which reduced cost variables do not de- 

rease the objective function). Furthermore, it can be seen that the 

mpact is more remarkable for bigger instances. 

.2. Comparison of different formulations of MGCSC 

We have continued our study solving (MP) using different al- 

ernatives for the pricing problem subroutine. In this set of experi- 

ents, as recommended by the above pilot study, Algorithm 1 has 

een run combining the RS heuristic, and using the different MILP 

ormulations (see Section 3 ) to solve the pricing problem. 

Five different MILP pricing routines are compared. The first two 

ILP models were (F flow 

) and (F MTZ ) . In the next three formu- 

ations, MILP are initialized without some constraints and/or vari- 

bles, that are included whenever necessary to separate infeasible 

olutions only after that the separation subroutine is invoked. We 

efer to Flow Clique Relaxation and MTZ Clique Relaxation when 

lique constraints are removed (see Section 3.3.1 ) from Flow-based 

nd Arborescence formulations, respectively. The fifth formulation, 

onnectivity Relaxation, removes the connectivity constraints (see 

ection 3.3.2 ). 

The results reported in Table 2 are averages calculated after 

olving ten instances of each size, letting a maximum of 24 hours 

f computation. This table contains five blocks, one for each im- 

lementation of Algorithm 1 . We report there the average solution 

ime (Av.Time), the average gap at termination (Av.GAP), and the 

umber of unsolved instances after the time limit is reached (Un- 

ol). The best results in terms of times, gaps and number of un- 

olved problems are written in bold. 

emark 6.1. The lower bound used to calculate the gap at termi- 

ation is given by the B&B process as usually. However, if the linear 

elaxation of the MP has not been solved at the time limit, another 

ower bound is still available, see Lübbecke and Desrosiers (2005) . 

articularly, for the GCCP the lower bound during the resolution of 



S. Benati, D. Ponce, J. Puerto et al. European Journal of Operational Research xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: EOR [m5G; June 19, 2021;21:47 ] 

T
a

b
le
 
2
 

A
v

e
ra

g
e
 
re

su
lt

s 
fo

r 
m

o
d

e
ls
 
w

it
h
 
p

ri
ci

n
g
 
p

ro
b

le
m

s 
b

a
se

d
 
o

n
 
fo

rm
u

la
ti

o
n

s 
in

tr
o

d
u

ce
d
 
in
 
S

e
ct

io
n
 
3
 . 

M
o

d
e

l 
(F
 fl

o
w
 

) 
(F
 M

T
Z
 

) 
F

lo
w
 
C

li
q

u
e
 
R

e
la

x
a

ti
o

n
 

M
T

Z
 
C

li
q

u
e
 
R

e
la

x
a

ti
o

n
 

C
o

n
n

e
ct

iv
it

y
 
R

e
la

x
a

ti
o

n
 

n
 

A
v.

T
im

e
 

A
v.

G
A

P
 

U
n

so
l 

A
v.

T
im

e
 

A
v.

G
A

P
 

U
n

so
l 

A
v.

T
im

e
 

A
v.

G
A

P
 

U
n

so
l 

A
v.

T
im

e
 

A
v.

G
A

P
 

U
n

so
l 

A
v.

T
im

e
 

A
v.

G
A

P
 

U
n

so
l 

2
0
 

1
.3

9
 

0
.0

0
 

0
 

4
.7

4
 

0
.0

0
 

0
 

2
.1

4
 

0
.0

0
 

0
 

2
.1

6
 

0
.0

0
 

0
 

1
.2

5
 

0
.0

0
 

0
 

3
0
 

3
4

.7
1
 

0
.0

0
 

0
 

6
4

.3
6
 

0
.0

0
 

0
 

6
2

.4
9
 

0
.0

0
 

0
 

4
0

.7
5
 

0
.0

0
 

0
 

5
3

.3
7
 

0
.0

0
 

0
 

3
6
 

4
1

9
.8

1
 

0
.0

0
 

0
 

5
4

7
.4

9
 

0
.0

0
 

0
 

5
4

6
.1

7
 

0
.0

0
 

0
 

7
3

9
.4

9
 

0
.0

0
 

0
 

8
1

7
.1

1
 

0
.0

0
 

0
 

4
0
 

3
5

4
5

.1
8
 

0
.0

0
 

0
 

1
5

0
3

.3
3
 

0
.0

0
 

0
 

2
7

3
1

.2
5
 

0
.0

0
 

0
 

1
4

4
4

.8
9
 

0
.0

0
 

0
 

5
3

1
9

.0
5
 

0
.0

0
 

0
 

5
0
 

1
8

3
3

1
.3

8
 

0
.0

0
 

0
 

2
4

8
2

0
.2

3
 

1
4

.0
3
 

2
 

1
6

6
3

4
.8

3
 

0
.0

0
 

0
 

2
1

3
2

0
.2

1
 

1
.4

9
 

2
 

4
0

0
0

6
.4

7
 

0
.0

1
 

1
 

5
4
 

5
0

6
4

6
.8

6
 

1
.0

3
 

3
 

4
3

6
8

4
.5

2
 

5
.0

1
 

3
 

5
1

8
6

1
.3

8
 

1
.3

0
 

3
 

4
4

0
9

5
.2

1
 

0
.6

6
 

3
 

7
1

2
2

1
.6

9
 

4
.1

2
 

7
 

6
0
 

8
1

1
5

2
.8

9
 

1
.8

3
 

5
 

6
0

6
9

7
.5

1
 

2
8

.2
8
 

6
 

8
0

9
5

0
.8

9
 

3
.7

4
 

7
 

5
6

9
8

8
.2

4
 

1
.9

6
 

4
 

8
6

4
0

5
.0

8
 

6
.6

8
 

1
0
 

T
o

ta
l 

R
e

su
lt
 

2
2

0
1

8
.8

9
 

0
.4

1
 

8
 

1
8

7
6

0
.3

1
 

6
.7

6
 

1
1
 

2
1

3
9

1
.7

4
 

0
.7

1
 

1
0
 

1
7

4
2

3
.4
 

0
.5

9
 

9
 

2
9

1
1

7
.7

2
 

1
.5

4
 

1
8
 

Fig. 2. Performance profile graph of #solved instances using different pricing prob- 

lem formulations for n = 20-60 (70 instances). 
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9 
he root node is 

B = 

n ∑ 

i =1 

γ ∗
i + n min 

S∈S 
c̄ (y S ) , 

rovided that the last pricing problem has been solved exactly. 

The results in this table point out that the best formulations 

re (F flow 

) and MTZ Clique Relaxation. The former solves 62 out 

0 instances up to optimality, the latter solves 61 instances, that 

s, one problem less, but with a slightly smaller average computa- 

ional time. Comparing Algorithm 1 with previous MILP methods, 

eported in Benati et al. (2017) , we can observe that the maximum 

olved size has been improved from 40 to 60 units with the same 

ime limit, and that computational times for solved instances have 

mproved as well. 

In Fig. 2 , the results of Table 2 are summarized. Profiles show 

hat pricing routines based on (F MTZ ) and MTZ Clique Relaxation 

ormulations are giving the best performance in terms of number 

f solved instances. However, Arborescence formulations (F MTZ ) 

nd the (MTZ Clique Relaxation) are giving the best solution times 

hen the instances are solved. It can also be seen that remov- 

ng the connectivity constraints (Connectivity Relaxation) does not 

ork better than removing the clique constraints (Flow Clique Re- 

axation and MTZ Clique Relaxation). The latter do not solve 10 and 

 instances, respectively, and the former 18 instances. 

To better understand the B&P algorithm performance, the 

eader can see in Table 3 different parameters computed as aver- 

ges on ten instances: the gap at the root node (RootNodeGap(%)); 

he number of necessary variables (Total) split by the variables 

dded at the beginning (Initial), obtained trough the heuristic 

ricer (Heur), and given by the exact pricer (Exact); the number 

f times that this latter routine is called (ExactIter); the nodes of 

he master problem branch-and-bound tree (Nodes); and the per- 

entage of CPU time that the algorithm uses to solve the pricing 

roblem (PricingTime(%)). 

emark 6.2. We have used multiple pricing in each iteration of 

he exact pricer. Therefore, in addition to the variable provided by 

he optimal solution of the pricing problem, we have added some 

ther feasible solutions with negative reduced cost obtained during 

he solving process. 

The results are shown until n = 50 to focus on those instances 

hat were solved to optimality. We are presenting the results only 

or one of the five different formulations of the pricing problem, 

amely Flow Clique Relaxation formulation , since all the others ex- 

ibit similar results. The reader should note that the parameters 

hich are analyzed refer to the MP rather that to the pricing prob- 

em and therefore the formulation used in the pricing problem is 

ot very important to explain their behaviour. 
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Table 3 

Branch-and-price performance. 

n RootNodeGap(%) Total Initial Heur Exact ExactIter Nodes PricingTime(%) 

n = 20 0.50 80.70 53.40 23.80 3.50 3.50 1.60 97.95 

n = 30 0.13 137.20 81.60 44.30 11.30 6.10 1.20 99.91 

n = 36 0.21 234.40 100.90 103.70 29.80 12.00 1.60 99.98 

n = 40 0.00 286.20 108.50 126.10 51.60 18.00 2.10 99.99 

n = 50 0.01 443.40 136.50 226.60 80.30 34.80 1.30 100.00 

Table 4 

Results on medium-sized problems for different heuristics. 

Problem fo[ | V | / 3] it b fo[ | V | / 2 ] it b fo[ 2 | V | / 3 ] it b RR VNS Optimal Solution 

G20_1 -114 1 -114 1 -114 1 -114 -114 -114 

G20_2 -74 2 -74 53 -74 46 -74 -34 -74 

G20_3 -122 12 -122 7 -122 10 -122 -122 -122 

G20_4 -112 2 -112 4 -112 16 -112 -110 -112 

G20_5 -128 1 -128 1 -128 1 -128 -102 -128 

G20_6 -102 2 -102 93 -102 125 -102 -96 -102 

G20_7 -154 11 -154 23 -154 23 -154 -102 -154 

G20_8 -96 149 -94 188 -96 14 -94 -92 -96 

G20_9 -116 1 -116 1 -116 1 -116 -116 -116 

G20_10 -140 1 -140 1 -140 1 -140 -140 -140 

n = 20 0.0 % 118.2 0.2 % 138.6 0.0 % 124.0 0.2 % 12.0 % 

G30_1 -244 217 -248 293 -248 187 -254 -248 -254 

G30_2 -152 33 -152 83 -152 22 -152 -152 -152 

G30_3 -210 294 -206 197 -210 108 -200 -144 -210 

G30_4 -200 191 -200 3 -192 57 -200 -170 -200 

G30_5 -288 104 -288 87 -276 81 -288 -276 -288 

G30_6 -260 29 -260 22 -260 13 -260 -260 -260 

G30_7 -228 121 -228 25 -228 124 -228 -222 -228 

G30_8 -126 29 -126 29 -126 22 -122 -108 -126 

G30_9 -276 148 -274 66 -276 124 -276 -136 -276 

G30_10 -174 57 -158 8 -174 14 -168 -154 -176 

n = 30 0.5 % 155.2 1.5 % 136.6 1.2 % 132.6 1.2 % 13.3 % 

G36_1 -296 61 -300 135 -296 134 -296 -296 -300 

G36_2 -304 140 -304 254 -304 188 -300 -300 -304 

G36_3 -390 36 -390 3 -390 329 -356 -340 -390 

G36_4 -336 13 -336 3 -336 83 -326 -304 -340 

G36_5 -300 57 -300 42 -300 237 -300 -300 -300 

G36_6 -286 1 -286 1 -286 1 -286 -286 -286 

G36_7 -344 324 -320 143 -318 131 -310 -324 -344 

G36_8 -230 143 -240 78 -230 117 -230 -204 -246 

G36_9 -268 85 -246 34 -242 4 -260 -242 -268 

G36_10 -290 41 -290 121 -290 350 -290 -290 -296 

n = 36 1.1 % 129.7 2.1 % 127.1 2.8 % 150.0 3.7 % 6.1 % 

G40_1 -306 300 -290 164 -292 134 -294 -284 -318 

G40_2 -514 107 -514 54 -514 196 -514 -508 -514 

G40_3 -306 174 -300 70 -306 184 -288 -238 -332 

G40_4 -406 333 -394 285 -384 46 -384 -384 -412 

G40_5 -342 196 -342 372 -342 141 -326 -342 -342 

G40_6 -336 204 -326 19 -296 99 -292 -252 -336 

G40_7 -306 377 -280 42 -306 344 -272 -184 -330 

G40_8 -294 175 -314 111 -286 5 -270 -252 -314 

G40_9 -374 170 -386 329 -354 1 -396 -376 -396 

G40_10 -444 304 -444 255 -444 201 -420 -372 -456 

n = 40 3.5 % 164.6 4.6 % 145.4 6.4 % 136.8 8.5 % 15.9 % 

mean -249.70 116.15 -247.45 92.50 -245.40 97.88 -242.85 -224.40 -253.80 

#solved 26 23 22 20 9 

t

r

o  

n

i

T  

d

s

6

c

G

r

{  

a

s  
Here we can see the strength of the B&P algorithm: it can solve 

he problem using very few variables comparing with other al- 

eady proposed formulations to solve the GCCP, which are of the 

rder of O (n 2 ) (see Benati et al., 2017 ). The goodness of the root

ode gap makes the size of the B&B tree small. The counterpart 

s the time that the algorithm spends solving the pricing problem. 

o deal with it one has to save calls to the exact routine what is

one by means of initial columns, the heuristic pricer, and adding 

everal variables with negative reduced cost in each iteration. 
10 
.3. Comparing different heuristic algorithms on GCCP 

The previous computational section shows that heuristic pro- 

edures are still needed to solve the largest instances of the 

CCP. Here, results about Algorithm 4 (RS) are reported. Pa- 

ameter θ = max _ random _ steps has been fixed such that θ ∈ 

�| V | / 3 � , �| V | / 2 � , � 2 | V | / 3 �} , (the greater the number, the more the

lgorithm is driven by random choices of e i j -s). The number of 

tarting solutions is max _ start = 10 | V | , the same number used in
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Table 5 

Results on moderately large-sized problems for different heuristics. 

Problem fo[ | V | / 3] it b fo[ | V | / 2 ] it b fo[ 2 | V | / 3 ] it b RR VNS Optimal Solution 

G50_1 -494 399 -510 316 -510 390 -492 -472 -562 

G50_2 -636 273 -636 225 -642 31 -642 -642 -650 

G50_3 -610 326 -630 49 -664 74 -576 -576 -674 

G50_4 -488 232 -470 173 -464 15 -446 -450 -504 

G50_5 -644 33 -644 131 -644 213 -644 -644 -644 

G50_6 -358 99 -380 202 -400 35 -298 -264 -400 

G50_7 -536 435 -532 186 -534 14 -498 -498 -564 

G50_8 -614 10 -614 418 -614 32 -622 -502 -674 

G50_9 -638 322 -636 3 -636 283 -614 -586 -642 

G50_10 -462 288 -446 3 -446 232 -446 -448 -464 

n = 50 5.2 % 142.8 4.9 % 129.9 3.9 % 123.1 9.3 % 12.6 % 

G54_1 -790 80 -788 1 -788 1 -788 -694 -790 

G54_2 -588 393 -580 524 -580 150 -596 -522 -662 

G54_3 -542 67 -542 206 -542 26 -510 -496 -544 1 

G54_4 -560 146 -538 192 -544 382 -568 -446 -576 

G54_5 -654 73 -654 513 -638 431 -650 -578 -670 

G54_6 -568 61 -568 107 -568 80 -560 -564 -594 

G54_7 -628 196 -624 105 -628 165 -614 -614 -640 

G54_8 -606 181 -614 385 -606 104 -588 -578 -624 

G54_9 -464 270 -450 261 -450 85 -394 -462 -490 1 

G54_10 -804 368 -766 406 -800 378 -808 -808 -808 

n = 54 3.2 % 128.9 4.4 % 142.7 4.2 % 127.8 5.6 % 10.1 % 

G60_1 -726 5 -766 142 -682 199 -660 -604 -782 1 

G60_2 -732 106 -732 168 -732 219 -636 -600 -732 1 

G60_3 -836 85 -834 48 -828 83 -758 -832 -832 

G60_4 -680 8 -684 596 -690 382 -666 -558 -750 

G60_5 -666 39 -650 467 -660 36 -626 -666 -712 

G60_6 -938 51 -938 469 -938 193 -836 -788 -964 

G60_7 -562 257 -538 424 -518 534 -502 -500 -606 

G60_8 -650 288 -620 484 -624 500 -582 -658 -664 

G60_9 -894 17 -894 233 -858 305 -832 -848 -912 

G60_10 -622 325 -604 255 -636 342 -602 -510 -682 1 

n = 60 4.5 % 117.2 5.3 % 144.6 6.4 % 138.8 12.4 % 14.2 % 

mean -633.00 181.10 -629.40 256.40 -628.80 197.13 -601.80 -580.27 -660.40 

# best solution 15 8 11 6 5 

1 Best solution found by Algorithm 1 
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enati et al. (2017) to test heuristics Variable Neighborhood Search 

VNS) and Random Restart (RR). That is, all algorithms try to im- 

rove the same number of initial solutions. For the test, algorithms 

ere coded in Julia version 1.03 ( Bezanson, Edelman, Karpinski, & 

hah, 2017 ) and run on HP EliteBook with a Intel I5-core CPU. 

Computational results are contained in Tables 4 , 5 , 6 and 7 , in

hich are reported the objective function and the first iteration 

 it b ) in which the best solution has been found (the largest the 

alue, the most important is the diversification phase). For every 

, we summarize the percentage gap to the optimal/best value and 

he average number of iterations. 

Table 4 considers medium-sized problems for which we know 

he optimal objective function. Here we compare the new results 

f RS with the old ones obtained by RR, of VNS, and the optimal

alues, Benati et al. (2017) . Note that some of those optimal solu- 

ions could not be found in Benati et al. (2017) but are certified 

ith the results of our B&P. It can be seen that average objective 

alues are in favor of the new heuristic RS, as the average results of 

ll three implementations are always better than the correspond- 

ng ones of both RR and VNS. If instead it is compared how many

imes the best solution is found, then it happened 26, 23, 22 for 

he three version of RS and only 20 times for RR and 9 times for

NS, so the same conclusion holds. 

The results on new instances, for which in most cases the op- 

imal solutions have been found in this research, are reported in 

able 5 . It can be seen again that RS with any parameter is on

verage better than both VNS and RR, even though this time the 
11 
euristics have seldom found the optimal solutions. Best solutions 

ave been found 15, 8, 11 times by the three RS’s, 6 by RR, and 5

imes by VNS. This shows that there is still room for improving the 

euristic algorithms (see next section). 

Finally, in Table 6 , larger instances are considered, and again av- 

rages of objective values are in favor of the new heuristic, as the 

eans of all three implementations are better than those from RR 

nd VNS, and counting how many times the best known solution 

s found, respectively 14, 8, 2, 1, 2, is still in favor of RS. Regarding

hat parameter choice of RS is best, it can be seen that it does not

ake a great difference when the instance size is small, but when 

t gets larger, it seems that max _ random _ steps = �| V | / 3 � gives bet-

er results. Finally, the iteration in which the best solution is found 

columns it b ) exhibits a great variability: This fact suggests that the 

iversification mechanism devised to explore different solutions 

as been effective. Heuristics try to improve the same number of 

nitial solutions and therefore they found the same number of lo- 

al optima. So why RR and VNS, apparently more sophisticated, are 

eft behind by RS? The reason could be the diversification. Both RR 

nd VNS could be too constrained by the initial solution and they 

top too early in inferior local optima. 

Regarding computational times, finding an improved solution 

ith RS is much faster than with RR or VNS, and the whole com- 

utational times are reported in Table 7 . As expected given the 

implicity of the algorithm, the RS times are much less than VNS 

nd RR. The reason is that the loop of Steps 9–17 of Algorithm 4 is

perated in O (n 2 ) , and it is repeated at most O (n ) times. There-



S. Benati, D. Ponce, J. Puerto et al. European Journal of Operational Research xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: EOR [m5G; June 19, 2021;21:47 ] 

Table 6 

Results on large-sized problems for different heuristics. 

Problem fo[ | V | / 3] it b fo[ | V | / 2 ] it b fo[ 2 | V | / 3 ] it b RR VNS Best Solution 

G80_1 -1176 780 -1172 171 -1164 671 -1030 -1086 -1180 

G80_2 -1120 31 -1096 385 -1060 667 -968 -1042 -1120 

G80_3 -1314 220 -1314 361 -1290 769 -1274 -1260 -1314 

G80_4 -1066 696 -1036 638 -1048 780 -976 -900 -1078 

G80_5 -1346 213 -1316 30 -1346 568 -1234 -1370 -1370 

G80_6 -956 46 -956 194 -930 619 -936 -818 -1008 

G80_7 -1298 193 -1282 163 -1270 115 -1246 -1286 -1298 

G80_8 -1142 636 -1132 15 -1128 33 -998 -904 -1166 

G80_9 -1368 207 -1368 490 -1364 8 -1190 -1196 -1368 

G80_10 -1504 730 -1472 489 -1472 142 -1416 -1440 -1504 

n = 80 1.0 % 130.3 2.2 % 123.9 2.9 % 137.2 9.3 % 9.5 % 

G100_1 -1732 156 -1732 201 -1732 446 -1630 -1482 -1746 

G100_2 -2126 684 -2110 891 -2090 868 -1730 -1908 -2126 

G100_3 -1544 687 -1544 843 -1492 346 -1216 -1266 -1544 

G100_4 -2184 491 -2208 721 -2140 166 -2094 -1966 -2208 

G100_5 -1708 19 -1724 198 -1690 503 -1442 -1386 -1724 

G100_6 -2160 678 -2160 295 -2160 798 -2176 -2176 -2176 

G100_7 -1860 71 -1838 44 -1914 333 -1686 -1756 -1968 

G100_8 -1532 14 -1506 365 -1482 937 -1390 -1484 -1532 

G100_9 -2090 876 -2084 890 -2068 309 -1934 -1798 -2090 

G100_10 -2276 907 -2308 444 -2234 586 -2136 -2194 -2308 

n = 100 1.0 % 122.6 1.1 % 125.4 2.2 % 128.0 10.7 % 10.7 % 

mean -1575.10 416.75 -1567.90 391.40 -1553.70 483.20 -1435.10 -1435.90 -1591.40 

# best solution 14 8 2 1 2 

Table 7 

Average of computational times (in 

seconds). 

n RS RR VNS 

40 0.07 2.48 1.63 

60 0.27 9.91 6.71 

80 0.75 30.15 19.32 

100 1.65 61.36 42.67 
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Table 8 

Cpu time and % gap of different heuristics with respect to best known solu- 

tion. 

RS Matheuristic RS + Matheur. 

n GAP CPU GAP CPU GAP CPU 

20 0.21 0.00 0.39 0.03 0.00 0.02 

30 1.25 0.03 2.05 0.08 0.48 0.10 

36 3.28 0.05 2.19 0.23 2.33 0.18 

40 8.02 0.07 3.18 0.27 1.68 0.32 

50 7.17 0.15 5.50 1.05 3.18 0.83 

54 2.98 0.18 5.75 0.82 2.91 0.62 

60 4.38 0.27 7.15 1.71 3.85 1.40 

80 0.30 0.75 4.80 7.75 0.00 4.81 

100 0.16 1.65 8.16 27.66 0.00 11.50 

200 0.22 26.80 6.63 353.24 0.02 227.35 

500 0.06 1302.10 4.40 3600.00 0.05 4902.10 

1000 0.38 3600.00 3.85 3600.00 0.22 7200.00 

Total Result 2.37 411.0 4.50 632.73 1.23 1029.10 

t

t

t

t

R

t

t
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o

s

t

o

s

s

t

g

O

ore it takes O (n 3 ) operations to calculate a local optimum (to be

epeated max _ start times). Conversely, VNS and RR are based on 

ocal interchange, whose complexity is much higher. For example, 

t implies a subroutine of O (n 2 ) only to check the connectivity of

nterchanging two units. 

Having found that the greedy descent performs much better 

han the local interchange, one may wonder to what extent this 

esult may be applied to other constrained clique partitions. The 

esult strongly depends on the computational cost of shrinking a 

ode with respect to the cost of reassigning a unit. If connectivity 

onstraints are replaced by community constraints, such as the one 

efined by modularity and/or cohesion, Cafieri, Costa, and Hansen 

2015) , then these are cases in which a reassignment affects the 

lobal properties of clusters. Conversely, the operations of shrink- 

ng nodes remains faster, therefore it is very likely that the solution 

pace is explored more efficiently. 

.4. MILP-relaxed matheuristic for GCCP: combining randomized 

hrink heuristic with branch-and-price 

The preceding methodologies can be combined for a new 

atheuristic: MILP-relaxed matheuristic (Truncated Column Gener- 

tion). As described previously, this matheuristic consists in solving 

he pricing problem heuristically with RS, while branching is per- 

itted to the master problem. From previous computational tests, 

he method combines the velocity of RS with the global accuracy 

f an ILP formulation. The method is especially useful when an in- 

tance must be solved with sufficient accuracy. 
12 
In the following computational tests, we compare the solu- 

ion quality of the RS heuristic with the MILP-relaxed matheuris- 

ic. Therefore, we report results on three heuristic: the plain RS, 

he MILP-relaxed matheuristic in which RS is called only to solve 

he pricing problem (Matheuristic), and the situation in which 

S is also called to initialize the master with a feasible solu- 

ion and to solve the pricing (RS + Matheur.). Table 8 reports 

he results of these three algorithms on instances of sizes from 

 = 20 until n = 10 0 0 . This table shows the CPU time in sec-

nds (CPU) and the gap ( GAP = 100(‘this-heuristic-solution’ - ‘best- 

olution’)/ | ‘best-solution’ | ) of these three algorithms with respect to 

he best known solution for each instance (note that for instances 

f sizes greater than 60 the comparison is with respect to the best 

olution found by one of our own heuristics). The reader may ob- 

erve that we have imposed to each run a maximum execution 

ime of one hour. Times reported for RS + Matheur. are the aggre- 

ation of the time running RS plus the time running matheuristic. 

ur intuition is confirmed by data: On average the best results are 
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btained by the combination of RS with MILP-relaxed matheuristic 

or any instance size. 

. Conclusions and future work 

This paper analyzes the Graph-Connected Clique-Partitioning 

roblem (GCCP) presenting three different new solution ap- 

roaches: one exact and two heuristics. In Benati et al. (2017) this 

roblem was already introduced but its solution methods could 

nly handle small-sized instances. Our new approaches improve 

his drawback. We provide a new Integer Linear Programming (ILP) 

ormulation, based on a set partitioning formulation, that approxi- 

ates very-well the unknown optimal solution. This set partition- 

ng formulation is solved implementing a branch-and-price (B&P) 

lgorithm. The resulting pricing problem is a new combinatorial 

roblem: the Maximum-weighted Graph-Connected Single-Clique 

MGCSC), that is analyzed and solved proposing different MILP for- 

ulations. 

Besides enlarging the sizes of problems that can be solved 

xactly, to tackle larger size problems we propose two new 

ast heuristics: the “random shrink” (RS) and a MILP-relaxed 

atheuristic. These algorithms improve the previous VNS and RR 

lgorithms of Benati et al. (2017) since they are both faster and 

ore accurate. Extensive computational experiments show the 

sefulness of our new approaches giving rise to new opportunities 

o apply this classification methodology, that combines individual 

nd relational data to new actual situations. 
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ppendix A. Alternative formulations for the pricing problem 

1. Flow-based formulation with a auxiliary node 

The rationale of this formulation is the same to the one de- 

cribed in Section 3.1 , but using an auxiliary node as a source 

ode. Let G D = (V ∪ { 0 } , A ) be a digraph, in which there is an aux-

liary node { 0 } and a set of arcs, A, so defined: Two arcs (i, j) and

j, i ) for every edge e i j (= e ji ) ∈ E; and the auxiliary arcs (0 , i ) for

ll i ∈ V . Flow variables f i j are defined for all pairs i, j such that

i, j) ∈ A, the node 0 is assumed to be the flow source node, and

t is also assumed a demand of one flow unit from all nodes of V .

o define this formulation, we use the same set of variables used 

or (F flow 

) but taking into account that now the arc set A includes 

he arcs with origin at 0. This alternative flow-based formulation 

f MGCSC is: 

F 0 flow 

) min 

∑ 

i ∈ V 

n ∑ 

j ∈ V : j >i 

c i j z i j −
∑ 

i ∈ V 
γ ∗

i x i (17) 

s.t. (2) − (4) , (7) − (9) , 

f i j + f ji ≤ (n − 1) z i j , ∀ (i, j) ∈ A : i, j ∈ V, i < j, (18) 

∑ 

i ∈ V 
f 0 i = 

∑ 

i ∈ V 
x i , (19) 
13 
f 0 i + 

∑ 

j∈ V :( j,i ) ∈ A 
f ji −

∑ 

j ∈ V :(i, j ) ∈ A 
f i j = x i , ∀ i ∈ V, (20) 

z 0 i ≤ x i , ∀ i ∈ V, (21) 

f 0 i ≤ nz 0 i , ∀ i ∈ V, (22) 

∑ 

i ∈ V 
z 0 i ≤ 1 , (23) 

z 0 i ∈ { 0 , 1 } , ∀ i ∈ V. (24) 

Constraints (18) avoid the flow between nodes which are not 

ncluded in the optimal cluster S. Constraints (19) and (20) are the 

ode conservation flow, in which one unit of flow is retained by 

he crossed node. Constraints (21) –(23) ensure that the outgoing 

ow from the auxiliary node is sent to at most one node of the 

luster (the flow upper bound is n ). Lastly, (24) define the domain 

f the variables. 

2. Arborescence formulation with an auxiliary node 

Let G D = (V ∪ { 0 } , A ) be a digraph defined as in Section A.1 .

he rationale behind this formulation is the one followed in 

ection 3.2 , but the MTZ description of the Spanning Tree builds 

n arborescence rooted at an auxiliary node 0. Binary variables t, 

 and z are defined as in the formulation (F MTZ ) but taking into 

ccount that now the arc set A includes the arcs with origin at 0. 

ence, this alternative formulation of the minimum MGCSC prob- 

em is: 

F 0 MTZ ) min 

∑ 

i ∈ V 

∑ 

j∈ V : i< j 

c i j z i j −
∑ 

i ∈ V 
γ ∗

i x i 

s.t. (2) − (4) , (7) , (9) − (11) , (13) , (14) , 

t 0 j + 

∑ 

i ∈ V :(i, j) ∈ A 
t i j = x j , ∀ j ∈ V, (25) 

∑ 

j∈ V 
t 0 j = 1 . (26) 

Constraints (25) and (26) ensure there is only one incident arc 

o every node of the cluster, so variables t i j define a directed sub- 

ree. 

Formulation (F 0 
MTZ 

) can be strengthened with the some families 

f valid inequalities described in Section B.3 in Appendix. 

ppendix B. Valid inequalities for the pricing problem 

ormulations 

1. Valid inequalities for (F flow 

) 

Formulation (F flow 

) can be strengthened with the following 

amily of valid inequalities: ∑ 

j ∈ V :(i, j ) ∈ A 
f i j ≥

∑ 

k ∈ V : k ≤i 

x k − x i − n 

∑ 

k ∈ V : k>i 

z ik − n (1 − x i ) , ∀ i ∈ V, 

(B27) 

f i j + f ji ≤ (n − 1) z i j , ∀ (i, j) ∈ A : i < j, (B28) 

f i j + f ji ≤ (n − 2) z i j + 

∑ 

k ∈ V : i<k 

z ik , ∀ (i, j) ∈ A : i < j. (B29) 
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Constraints ( Appendix B27 ) guarantee that the outflow from the 

ode with the highest index of the cluster is at least the number of 

lements of the cluster minus one. Constraints ( Appendix B28 ) and 

 Appendix B29 ) provide upper bound of the flow crossing an edge 

in both sense) being this n − 1 for the node with the highest index 

n the cluster, n − 2 for the remaining nodes in the cluster and 0 if

ne of the two end-nodes of the edges is not in the cluster. 

2. Valid inequalities for (F MTZ ) 

Formulation (F MTZ ) can be strengthened with the following set 

f valid inequalities: ∑ 

i ∈ V :(i, j) ∈ A 
t i j ≤ x j , ∀ j ∈ V, (B30) 

∑ 

i ∈ V, (i, j) ∈ A 
t i j ≤

n ∑ 

k ∈ V : k> j 

z jk , ∀ j ∈ V, (B31) 

� j ≤ (n − 1) 
∑ 

k ∈ V :(k, j) ∈ A 
t k j , ∀ j ∈ V, (B32) 

� i ≥
∑ 

k ∈ V :(k,i ) ∈ A 
t ki , ∀ i ∈ V. (B33) 

onstraints ( Appendix B30 ) guarantee that there is at most an in- 

ident arc in the nodes of the cluster. Constraints ( Appendix B31 ) 

nsure that the node with the greatest index (the root of the sub- 

ree) does not have incoming arcs. Constraints ( Appendix B32 )–

 Appendix B33 ) impose bounds on the � -variables. 

3. Valid inequalities for (F 0 
MTZ 

) 

Formulation (F 0 
MTZ 

) can be strengthened with the following 

amily of valid inequalities: 

t 0 j + z i j ≤ x j , ∀ (i, j) ∈ A : i < j, (B34) 

� i ≥ x i − t 0 i , ∀ i ∈ V, (B35) 

� j ≤ (1 − t 0 j )(n − 1) , ∀ j ∈ V. (B36) 

Constraints ( Appendix B34 ) establish that the fictitious node 

s connected with the node of the greatest index of S, there- 

ore they break up symmetric optimal solutions. Constraints 

 Appendix B35 )–( Appendix B36 ) establish valid bounds for the � -

ariables. 
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